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A high-order projection scheme was developed for the study of chemically reacting
flows in the low-Mach number limit. The numerical approach for the momentum
transport uses a combination of cell-centered /cell-averaged discretizations to achieve
a fourth-order formulation for the pressure projection algorithm. This scheme is cou-
pled with a second-order in time operator-split stiff approach for the species and energy
equations. The code employs a fourth-order, block-structured, adaptive mesh refine-
ment approach to address the challenges posed by the large spectrum of spatial scales
encountered in reacting flow computations. Results for 1D and 2D laminar flame
configurations are used to illustrate the performance of the numerical construction.

Introduction

Since the detailed structure and various non-equilibrium characteristics of chemical reacting
systems are difficult and costly to obtain experimentally, numerical simulation is an impor-
tant tool in complementing experimental investigations of combustion processes. Chemical
reacting systems based on hydrocarbon fuels typically exhibit a large spectrum of char-
acteristic spatial and temporal scales. The complexity of kinetic models even for simple
hydrocarbon fuels compounds this problem making multidimensional numerical simulations
difficult even for laboratory scale configurations.

These difficulties are commonly addressed in a variety of ways. For low speed flows, one
may adopt a low Mach number approximation [1] for the momentum transport. This approx-
imation assumes that acoustic waves travel at infinite speed, a justifiable assumption in many
low-speed flows. One can also exploit the structure of the governing equations and adopt
an operator-split mechanism, performing the transport and reactive time-advancement via
specialized integrators [2]. In problems where fine structures exist only in a small frac-
tion of the domain e.g. in laminar jet flames, one may employ adaptive mesh refinement
(AMR) [3] to concentrate resolution only where needed [4-7], while maintaining a coarse
mesh resolution elsewhere.

We have recently developed a numerical model that aims to address some of the chal-
lenges posed by the use of AMR for reacting flow computations. In order to reduce the
number of grid points and the number of refinement levels in the computational mesh hier-
archy we employ high-order stencils to discretize the transport equations and to interpolate
between the computational blocks on adjacent mesh levels. A projection scheme is employed



for the momentum transport. Since in most reacting flows mesh adaptivity is driven by the
narrow flame structure rather than the velocity field, we are solving the momentum trans-
port on a uniform mesh only. This further enhances the efficiency of the model since the
elliptic solver required by the pressure equation is more efficient on a uniform mesh com-
pared to a multilevel one [8]. The numerical approach and results obtained for canonical
configurations are presented below.

Computational Model

In the low-Mach number limit, the continuity, momentum and scalar transport equations
for a chemically reacting system are written in compact form as
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Here v is the velocity vector, p the density, T the temperature, Y, the mass fraction of
species k, p is the hydrodydynamic pressure, and N, is the number of chemical species. The
D

+; operator in the continuity equation represents the material derivative, % = % +v-V.

The system of transport equations is closed with the equation of state for an ideal gas:
§RT
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where P, is the thermodynamic pressure, R is the universal gas constant, W, is the molecular
weight of species k, and W is the molecular weight of the mixture. The thermodynamic
pressure is constant in time and spatially uniform for an open domain in the low-Mach
number limit.

The convection and diffusion terms in (1) are given by
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Here, 7 is the stress tensor, A is the mixture thermal conductivity, V. is the diffusion
velocity of species k, ¢, and ¢, are the specific heats at constant pressure for the mixture
and species k, respectively, and hy and wj, are the specific enthalpy and molar reaction rate,
respectively, of species k.

NASA polynomials are used to compute thermodynamic properties. The transport prop-
erties are based on a mixture-averaged formulation and are evaluated using the DRFM
package [9].

The equation of state (2) is used to derive an expression for the right hand side of the
continuity equation (1a)
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Numerical approach

The numerical integration of the system of equations is performed in three stages. First, a
projection approach is adopted to advance the velocity field based on the equations (1a,1b).
In the second stage, the scalars are advanced using an operator split approach that sepa-
rates the convection and diffusion contributions from the ones due to the chemical source
terms. Symmetric Strang splitting is employed, beginning with the chemical source term
contribution for half the time step, followed by the contributions from convection and dif-
fusion terms for a full time step, and concluded by the remaining contribution from the
reaction term for half the time step. The third stage repeats the projection algorithm from
the first stage using the updated scalar fields from second stage. Spatial derivatives are
approximated using 4™order finite differences.

Stage 1.a

A 2"_order Adams-Bashforth scheme is used to advance the velocity field using momentum
and diffusion terms only

vt —yn 1 At . e LAE -
T:<1+§E>(CU+DU>_§E(CU1+DU Y) (6)

Superscripts n and n — 1 refer to values at the current t™ and previous ¢~ times,
respectively. The above expression takes into account changes in time step values, At =
t+D) — () and At, = ™) — ¢=1),

Stage 1.b

The intermediate velocity field, v does not satisfy the continuity equation (la). This
equation is used in conjunction with the momentum equation (1b) to derive an equation for
the hydrodynamic pressure field
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Since the scalar fields at ¢! are not yet known,
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Fourth-order finite difference discretizations [10] for the variable coefficient Poisson equation
(7) lead to consistent linear systems for periodic computational domain. However, for
generic configurations the singular linear systems that arise from high-order discretization
of eq. (7) are inconsistent. To circumvent this problem we adopt a cell-average formulation
for the pressure equation in conjunction with a high-order discretization introduced by
Kadioglu et al [11]. This formulation is based fourth-order cell-averaged values for p, V - v,
and %% computed from their cell-centered counterparts. The solution of the new linear
system is the cell-averaged pressure, p. The pressure gradients at the edge centers, required
to compute the corrections for the intermediate velocity field, are then extracted from
their edge-averaged counterparts by solving band-diagonal systems along each edge of the
computational domain.

Stage 1.c
The gradient of the hydrodynamic pressure gradient is used to correct the intermediate

velocity field v"*! to obtain the velocity at n + 1
At
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where p"™! is extrapolated from values at n and n — 1 similar to eq. (8). Superscript p was
added to v to distinguish the velocity values obained at the end of Stage 1 from the ones
obtained at the end of Stage 3 below.

Stage 2.a

The stiff integrator package is used to advance scalar fields based on contributions from the
source terms, Sp and Sy, :
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The time advancement during this stage is done independently for each mesh cell in the
grid hierarchy since the RHS (right-hand-side) terms in eq. (9) do not have any spatial
dependence. At the end of the stage the scalar values are recursively restricted from the
fine to the coarse grid levels in the mesh hierarchy. During this stage, as well as Stages 2.b
amd 2.c described below density is computed from equation of state (2).
Stage 2.b

A 2"-order, multi-stage, Runge-Kutta-Chebyshev (RKC) [12] scheme is used to advance
scalars based on the contributions from convection and diffusion terms:
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This time integration in performed on all levels of the AMR mesh hierarchy in a “time-
refined” manner [3,13]. A fine-to-coarse restriction on all levels of the mesh hierarchy
concludes this stage.



Stage 2.c
Stage 2.c is a repeat of Stage 2.a, using the “**” scalar values as initial conditions
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At the end of this stage all scalars correspond to t"*!. Similar to Stage 2.a, values are
restricted sequentially from fine to coarse grid level to ensure the best available values on
all mesh levels.

Stage 3.a
A 2™order scheme based on both n and (n + 1) values is used to finalize the solution for
the velocity field
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Stage 3.b
n+1
This stage is similar to Stage 1.b. For this stage l% is calculated using the scalar
p Dt
values at "+,
Stage 3.c

Stage 3.c is also similar to Stage 1.c. At the end of this stage all the velocity field v**! is
prolonged sequentially from coarse to fine grid levels.

Adaptive mesh refinement

We employ and block-structured AMR approach where the computational domain is split
into rectangular blocks. These blocks are succesively refined in the regions where the current
grid resolution is not sufficient to capture the physics of interest. These blocks comprise
a grid hierarchy where blocks on a given level are completely embedded in blocks on the
immediately coarser level. A coarsening algorithm is also employed to remove computational
blocks where higher grid density is no longer necessary.

The advancement in time of the AMR solution is based on Berger-Colella time refinement
[3,13]. Figure 1 shows a schematic of the recursive time integration. Consider the solutions
on levels L and L + 1 at time ¢,,. Level L is first advanced to t,, + At, then the solution on
L + 1 is advanced in two half steps, At/2 to ensure the scheme stability on the finer grid.
During time advancement on L + 1, boundary conditions are computed by interpolation
using the solution on L. At t, + At the solution on L + 1 is interpolated down to the
corresponding regions on level L. In order to preserve the 4""-order spatial convergence of
the numerical scheme, the interpolations between adjacent grid levels use 6'-order spatial
stencils [14].
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Figure 1: Schematic of the time refinement in the context of AMR.

At range [s] T p v Vp Yen, Yco, You, Yuco

(50 — 25 — 12.5) x 10-8 1.92 192 197 158 192 1.8 194 1.53
(25 — 12.5 — 6.25) x 10-8 2.01 2.01 202 1.84 200 1.97 2.00 1.48
(12.5 — 6.25 — 3.125) x 1078 2.07 2.07 2.07 196 205 2.05 205 1.84
(6.25 — 3.125 — 1.5625) x 1078 | 2.17 2.18 2.17 201 2.13 216 2.12 1.94

Table 1: Cl-mechanism convergence rates for 1D simulations using 3 mesh levels.
The grid size on the coarse mesh level is A, = 30um. Solutions are advanced for
t = 0.4ms and errors are measured in a region 1.27,,;, < T < 0.87},4z-

Results

Both one-dimensional (1D) and two-dimensional (2D)) configurations are used to test the
numerical scheme presented in the previous section. Due to their computational expense,
time convergence rates are measured only in 1D configurations, while spatial convergence
rates are measured both in 1D and 2D configurations. All tests involve methane combustion,
and chemistry is modeled using a C; skeletal mechanisms with 16 species and 46 reversible
reactions [15].

Time Convergence

For time convergence tests, the initial condition corresponds to a freely propagating pre-
mixed flame, computed with Chemkin’s Premix package [16]. The computational domain
is 1.5 cm. A premixed flame propagates from right to left into an unburnt stoichiomet-
ric methane-air mixure. The initial solutions from the Chemkin package were relaxed on
successively refined grids to ensure consistent initial conditions for the convergence tests.
Figure 2 shows sample major species and radicals mass fractions profiles for a freely prop-
agating premixed flame used to for the multi-level convergence test. Table 1 shows select
results for time convergence tests using a 3-level mesh. All variables exhibit 2"-order time
convergence.

Spatial Convergence

The spatial convergence rates were first first computed using the same configuration as for
the time convergence tests shown in the previous section. For this series of tests the Chemkin
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Figure 2: Sample major species (left) and radicals (right) mass fraction profiles
for a freely propagating stoichiometric CH,-air flame. In the right figure, the
filled symbols correspond to the coarse mesh level (1) and the open symbols to
the finest mesh level (3).

Az range [um| | T p w Vp Yeow, Yeo, Yow, Yuco
30—15—75 (39 40 39 38 39 3.8 3.6 3.9
15—-75—375139 39 39 36 40 3.6 3.5 3.6

Table 2: Cl-mechanism convergence rates for 1D simulations using 3 mesh levels.
Solutions are advanced with a time step A; = 1078 for ¢t = 0.2ms. The grid sizes
in the left column correspond to the coarse mesh level. Errors are measured in a
region 1.27},,;, < T < 0.81,4z.

solution is first relaxed on the mesh with the finest grid size. The initial conditions for the
coarser computational grid are then obtained by interpolation using a 6th-order stencil. The
results presented in Table 2 show 4-th order spatial convergence for all variables.

Flame-Vortex Interaction

A canonical vortex-flame configuration [2] was chosen to explore the performance of the
numerical construction. The computational domain is (1.5x0.75)x 1072 m in the streamwise
and transversal directions, respectively. The velocity field corresponding to a periodic row of
counter-rotating Lamb-Oseen vortices is superimposed over the premixed 1D flame solution
discussed above. A relatively coarse mesh was used for the base mesh, with a cell size of
58um in each direction. Additional, finer, mesh levels were added in the flame region during
the simulation.

A one-step, irreversible Arrhenius global reaction model is used in addition to the C1
kinetic model to study the vortex-flame interaction. Figures 3 and 4 show freeze frames
of the vorticity and heat release rate fields. The vortex pair is initially located 2 x 10™3m
upstream of the flame and propagates with approximately 10m/s towards it. As the vortex
pair impinges into the flame, the flame intensity decreases on the centerline for the Cl1
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Figure 3: Vorticity (white solid countours) and normalized heat release rate (hrr,
shaded contours) for a simulation using the one-step reaction model.
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Figure 4: Vorticity (white solid countours) and normalized heat realease rate
(hrr, shaded contours) for a simulation using the C1 kinetic model.

model while the one-step solution shows little change in the interaction region. Similarly,
at locations off-centerline the flame intensity for the C1 model decreases significantly as it
stretched and rolled around the vortex pair. The last frames show a significantly contorted
flame, and the relative increase in the overall burning rate is about about 50% more for the
one-step reaction simulation compared to the simulation using the C1 model .

The AMR procedure allows to one to overlay a finer computational mesh in the region
where the flame interacts with the vortex pair while maintaining a coarse resolution else-
where. In Figure 5, we show mass fraction profiles for select radicals along the centerline
during the interaction. The AMR mesh has 2 levels, with a factor of 2 refinement between
the coarse and fine levels. The results from the two levels are indicated by ¢ and f as
subscripts in Fig. 5. While the finer mesh level is not necessary for the “slow” OH radical,
its benefits are evident for the narrow HC'O mass fraction profile.

Summary and Conclusions

This paper introduces a new high-order numerical model for the study of chemically reacting
flow in the low-Mach number limit. A 4-th order (in space) projection algorithm for the
momentum transport is coupled with an adaptive mesh refinement procedure of the same
order for the transport of energy and species mass fractions. Canonical 1D and 2D configu-
rations are used to investigate the performance of the numerical construction. Future work
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Figure 5: HCO and OH mass fraction profiles on the centerline during the flame-
vortex interaction, simulated on a 2-level AMR mesh. Results obtained on the
coarse mesh are indicated by c in the subscript; the fine-resolution results are
indicated by f.

will focus on investigating the efficiency of this methodology using detailed kinetic models
in the context of laboratory scale flame configurations.
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